Меню
Бесплатно
Главная  /  Windows  /  Сетевой анализатор трафика сниффер. Что такое сниффер: описание. Сетевые анализаторы Анализ трафика в локальной сети

Сетевой анализатор трафика сниффер. Что такое сниффер: описание. Сетевые анализаторы Анализ трафика в локальной сети

Многим пользователям компьютерных сетей, в общем-то, незнакомо такое понятие как «сниффер». Что такое сниффер, попытаемся и определить, говоря простым языком неподготовленного пользователя. Но для начала все равно придется углубиться в предопределение самого термина.

Сниффер: что такое sniffer с точки зрения английского языка и компьютерной техники?

На самом деле определить сущность такого программного или программно-аппаратного комплекса вовсе несложно, если просто перевести термин.

Это название происходит от английского слова sniff (нюхать). Отсюда и значение русскоязычного термина «сниффер». Что такое sniffer в нашем понимании? «Нюхач», способный отслеживать использование сетевого трафика, а, проще говоря, шпион, который может вмешиваться в работу локальных или интернет-ориентированных сетей, извлекая нужную ему информацию на основе доступа через протоколы передачи данных TCP/IP.

Анализатор трафика: как это работает?

Оговоримся сразу: сниффер, будь он программным или условно-программным компонентом, способен анализировать и перехватывать трафик (передаваемые и принимаемые данные) исключительно через сетевые карты (Ethernet). Что получается?

Сетевой интерфейс не всегда оказывается защищенным файрволлом (опять же - программным или «железным»), а потому перехват передаваемых или принимаемых данных становится всего лишь делом техники.

Внутри сети информация передается по сегментам. Внутри одного сегмента предполагается рассылка пакетов данных абсолютно всем устройствам, подключенным к сети. Сегментарная информация переадресуется на маршрутизаторы (роутеры), а затем на коммутаторы (свитчи) и концентраторы (хабы). Отправка информации производится путем разбиения пакетов, так что конечный пользователь получает все части соединенного вместе пакета совершенно из разных маршрутов. Таким образом «прослушивание» всех потенциально возможных маршрутов от одного абонента к другому или взаимодействие интернет-ресурса с пользователем может дать не только доступ к незашифрованной информации, но и к некоторым секретным ключам, которые тоже могут пересылаться в таком процессе взаимодействия. И тут сетевой интерфейс оказывается совершенно незащищенным, ибо происходит вмешательство третьего лица.

Благие намерения и злоумышленные цели?

Снифферы можно использовать и во вред, и во благо. Не говоря о негативном влиянии, стоит отметить, что такие программно-аппаратные комплексы достаточно часто используются системными администраторами, которые пытаются отследить действия пользователей не только в сети, но и их поведение в интернете в плане посещаемых ресурсов, активированных загрузок на компьютеры или отправки с них.

Методика, по которой работает сетевой анализатор, достаточно проста. Сниффер определяет исходящий и входящий траффик машины. При этом речь не идет о внутреннем или внешнем IP. Самым главным критерием является так называемый MAC-address, уникальный для любого устройства, подключенного к глобальной паутине. Именно по нему происходит идентификация каждой машины в сети.

Виды снифферов

Но и по видам их можно разделить на несколько основных:

  • аппаратные;
  • программные;
  • аппаратно-программные;
  • онлайн-апплеты.

Поведенческое определение присутствия сниффера в сети

Обнаружить тот же сниффер WiFi можно по нагрузке на сеть. Если видно, что передача данных или соединение находится не на том уровне, какой заявляется провайдером (или позволяет роутер), следует обратить на это внимание сразу.

С другой стороны, провайдер тоже может запустить программный сниффер для отслеживания трафика без ведома пользователя. Но, как правило, юзер об этом даже не догадывается. Зато организация, предоставляющая услуги связи и подключения к Интернету, таким образом гарантирует пользователю полную безопасность в плане перехвата флуда, самоустанавливающихся клиентов разнородных троянов, шпионов и т.д. Но такие средства являются скорее программными и особого влияния на сеть или пользовательские терминалы не оказывают.

Онлайн-ресурсы

А вот особо опасным может быть анализатор трафика онлайн-типа. На использовании снифферов построена примитивная система взлома компьютеров. Технология в ее самом простейшем варианте сводится к тому, что изначально взломщик регистрируется на определенном ресурсе, затем загружает на сайт картинку. После подтверждения загрузки выдается ссылка на онлайн-сниффер, которая пересылается потенциальной жертве, например, в виде электронного письма или того же SMS-сообщения с текстом вроде «Вам пришло поздравление от того-то. Чтобы открыть картинку (открытку), нажмите на ссылку».

Наивные пользователи кликают по указанной гиперссылке, в результате чего активируется опознавание и передача внешнего IP-адреса злоумышленнику. При наличии соответствующего приложения он сможет не только просмотреть все данные, хранимые на компьютере, но и с легкостью поменять настройки системы извне, о чем локальный пользователь даже не догадается, приняв такое изменение за воздействие вируса. Да вот только сканер при проверке выдаст ноль угроз.

Как защититься от перехвата данных?

Будь то сниффер WiFi или любой другой анализатор, системы защиты от несанкционированного сканирования трафика все же есть. Условие одно: их нужно устанавливать только при условии полной уверенности в «прослушке».

Такие программные средства чаще всего называют «антиснифферами». Но если задуматься, это те же самые снифферы, анализирующие трафик, но блокирующие другие программы, пытающиеся получить

Отсюда законный вопрос: а стоит и устанавливать такое ПО? Быть может, его взлом со стороны хакеров нанесет еще больший вред, или оно само заблокирует то, что должно работать?

В самом простом случае с Windows-системами в качестве защиты лучше использовать встроенный брэндмауэр (файрволл). Иногда могут наблюдаться конфликты с установленным антивирусом, но это чаще касается только бесплатных пакетов. Профессиональные покупные или ежемесячно активируемые версии таких недостатков лишены.

Вместо послесловия

Вот и все, что касается понятия «сниффер». Что такое sniffer, думается, уже многие сообразили. Напоследок вопрос остается в другом: насколько правильно такие вещи будет использовать рядовой пользователь? А то ведь среди юных юзеров иногда можно заметить склонность к компьютерному хулиганству. Они-то думают, что взломать чужой «комп» - это что-то вроде интересного соревнования или самоутверждения. К сожалению, никто из них даже не задумывается о последствиях, а ведь определить злоумышленника, использующего тот же онлайн-сниффер, очень просто по его внешнему IP, например, на сайте WhoIs. В качестве местоположения, правда, будет указана локация провайдера, тем не менее, страна и город определятся точно. Ну а потом дело за малым: либо звонок провайдеру с целью блокировки терминала, с которого производился несанкционированный доступ, либо подсудное дело. Выводы делайте сами.

При установленной программе определения дислокации терминала, с которого идет попытка доступа, дело обстоит и того проще. Но вот последствия могут оказаться катастрофическими, ведь далеко не все юзеры используют те хе анонимайзеры или виртуальные прокси-серверы и даже не имеют понятия, в Интернете. А стоило бы поучиться…

Оригинальное название: A Summary of Network Traffic Monitoring and Analysis Techniques

Ссылка на оригинальный текст: http://www.cse.wustl.edu/~jain/cse567-06/ftp/net_monitoring/index.html

Рекомендации: представленный перевод не является профессиональным. Возможны отступления от текста, неправильная трактовка тех или иных терминов и понятий, субъективное мнение переводчика. Все иллюстрации внесены в перевод без изменения.

Алиша Сессил

Обзор методов анализа и мониторинга сетевого трафика

Так как продолжают расти частные внутренние сети компаний, чрезвычайно важно, чтобы сетевые администраторы знали и умели управлять вручную различными типами трафика, который путешествует по их сети. Мониторинг и анализ трафика необходимы для того, чтобы более эффективно диагностировать и решать проблемы, когда они происходят, таким образом не доводя сетевые сервисы до простоя в течении длительного времени. Доступно много различных инструментов, которые позволяют помочь администраторам с мониторингом и анализом сетевого трафика. Данная статья обсуждает методы мониторинга ориентированные на маршрутизаторы и методы мониторинга не ориентированные на маршрутизаторы (активные и пассивные методы). Статья даёт обзор трёх доступных и наиболее широко используемых методов мониторинга сети, встроенных в маршрутизаторы (SNMP, RMON и Cisco Netflow) и предоставляет информацию о двух новых методах мониторинга, которые используют сочетание пассивного и активного методов мониторинга (WREN и SCNM).

1. Важность мониторинга и анализа сети

Сетевой мониторинг (мониторинг сети) - это сложная задача, требующая больших затрат сил, которая является жизненно важной частью работы сетевых администраторов. Администраторы постоянно стремятся поддержать бесперебойную работу своей сети. Если сеть «упадёт» хотя бы на небольшой период времени, производительность в компании сократится и (в случае организаций предоставляющих государственные услуги) сама возможность предоставления основных услуг будет поставлена под угрозу. В связи с этим администраторам необходимо следить за движением сетевого трафика и производительностью на всей сети и проверять, появились ли в ней бреши в безопасности.

2. Способы мониторинга и анализа

«Анализ сети - это процесс захвата сетевого трафика и его быстрого просмотра для определения того, что произошло с сетью» - Анжелла Оребаух. В следующих разделах обсуждаются два способа мониторинга сети: первый - маршрутизаторо-ориентированный, второй - не ориентированный на маршрутизаторы. Функциональность мониторинга, который встроен в сами маршрутизаторы и не требует дополнительной установки программного или аппаратного обеспечения, называют методами, основанными на маршрутизаторе. Не основанные на маршрутизаторах методы требуют установки аппаратного и программного обеспечения и предоставляют большую гибкость. Обе техники обсуждаются ниже в соответствующих разделах.

2.1. Методы мониторинга основанные на маршрутизаторе

Методы мониторинга основанные на маршрутизаторе - жёстко заданы (вшиты) в маршрутизаторах и, следовательно, имеют низкую гибкость. Краткое описание наиболее часто используемых методов такого мониторинга приведены ниже. Каждый метод развивался много лет прежде чем стать стандартизованным способом мониторинга.

2.1.1. Протокол простого сетевого мониторинга (SNMP), RFC 1157

SNMP - протокол прикладного уровня, который является частью протокола TCP/IP. Он позволяет администраторам руководить производительностью сети, находить и устранять сетевые проблемы, планировать рост сети. Он собирает статистику по трафику до конечного хоста через пассивные датчики, которые реализуются вместе с маршрутизатором. В то время, как существуют две версии (SNMPv1 и SNMPv2), данный раздел описывает только SNMPv1. SNMPv2 построен на SNMPv1 и предлагает ряд усовершенствований, таких как добавление операций с протоколами. Стандартизируется ещё один вариант версии SNMP. Версия 3 (SNMPv3) находится на стадии рассмотрения.

Для протокола SNMP присущи три ключевых компонента: управляемые устройства (Managed Devices), агенты (Agents) и системы управления сетью (Network Management Systems - NMSs). Они показаны на рис. 1.

Рис. 1. Компоненты SNMP

Управляемые устройства включают в себя SNMP-агента и могут состоять из маршрутизаторов, переключателей, коммутаторов, концентраторов, персональных компьютеров, принтеров и других элементов, подобных этим. Они несут ответственность за сбор информации и делают её доступной для системы управления сетью (NMS).

Агенты включают в себя программное обеспечение, которое владеет информацией по управлению, и переводят эту информацию в форму, совместимую с SNMP. Они закрыты для устройства управления.

Системы управления сетью (NMS) выполняют приложения, которые занимаются мониторингом и контролем устройств управления. Ресурсы процессора и памяти, которые необходимы для управления сетью, предоставляются NMS. Для любой управляемой сети должна быть создана хотя бы одна система управления. SNMP может действовать исключительно как NMS, или агент, или может исполнять свои обязанности или др.

Существует 4 основных команды, использующиеся SNMP NMS для мониторинга и контроля управляемых устройств: чтение, запись, прерывание и операции пересечения. Операция чтения рассматривает переменные, которые хранятся управляемыми устройствами. Команда записи меняет значения переменных, которые хранятся управляемыми устройствами. Операции пересечения владеют информацией о том, какие переменные управляемых устройств поддерживают, и собирают информацию из поддерживаемых таблиц переменных. Операция прерывания используется управляемыми устройствами для того, чтобы сообщить NMS о наступлении определённых событий.

SNMP использует 4 протокольные операции в порядке действия: Get, GetNext, Set и Trap. Команда Get используется, когда NMS выдаёт запрос на информацию для управляемых устройств. SNMPv1-запрос состоит из заголовка сообщения и единицы данных протокола (PDU). PDU-сообщения содержит информацию, которая необходима для удачного выполнения запроса, который будет либо получать информацию от агента, либо задавать значение в агенте. Управляемое устройство использует SNMP агентов, расположенных в нём, для получения необходимой информации и затем посылает сообщение NMS"у, с ответом на запрос. Если агент не владеет какой либо информацией по отношению к запросу, он ничего не возвращает. Команда GetNext будет получать значение следующего экземпляра объекта. Для NMS также возможно посылать запрос (операция Set), когда устанавливается значение элементов без агентов. Когда агент должен сообщить NMS-события, он будет использовать операцию Trap.

Как говорилось ранее, SNMP - протокол уровня приложений, который использует пассивные сенсоры, чтобы помочь администратору проследить за сетевым трафиком и производительностью сети. Хотя, SNMP может быть полезным инструментом для сетевого администратора, он создаёт возможность для угрозы безопасности, потому что он лишён возможности аутентификации. Он отличается от удалённого мониторинга (RMON), который обсуждается в следующем разделе, тем, что RMON работает на сетевом уровне и ниже, а не на прикладном.

2.1.2. Удалённый мониторинг (RMON), RFS 1757

RMON включает в себя различные сетевые мониторы и консольные системы для изменения данных, полученных в ходе мониторинга сети. Это расширение для SNMP информационной базы данных по управлению (MIB). В отличии от SNMP , который должен посылать запросы о предоставлении информации, RMON может настраивать сигналы, которые будут «мониторить» сеть, основанную на определённом критерии. RMON предоставляет администраторам возможности управлять локальными сетями также хорошо, как удалёнными от одной определённой локации/точки. Его мониторы для сетевого уровня приведены ниже. RMON имеет две версии RMON и RMON2. Однако в данной статье говорится только о RMON. RMON2 позволяет проводить мониторинг на всех сетевых уровнях. Он фокусируется на IP-трафике и трафике прикладного уровня.

Хотя существует 3 ключевых компонента мониторинговой среды RMON, здесь приводятся только два из них. Они показаны на рис. 2 ниже.


Рис. 2. Компоненты RMON

Два компонента RMON это датчик, также известный как агент или монитор, и клиент, также известный как управляющая станция (станция управления). В отличии от SNMP датчик или агент RMON собирает и хранит сетевую информацию. Датчик - это встроенное в сетевое устройство (например маршрутизатор или переключатель) программное обеспечение. Датчик может запускаться также и на персональном компьютере. Датчик должен помещаться для каждого различного сегмента локальной или глобальной сети, так как они способны видеть трафик, который проходит только через их каналы, но они не знают о трафике за их приделами. Клиент - это обычно управляющая станция, которая связана с датчиком, использующим SNMP для получения и коррекции RMON-данных.

RMON использует 9 различных групп мониторинга для получения информации о сети.

  • Statistics - статистика измеренная датчиком для каждого интерфейса мониторинга для данного устройства.
  • History - учёт периодических статистических выборок из сети и хранение их для поиска.
  • Alarm - периодически берёт статистические образцы и сравнивает их с набором пороговых значений для генерации события.
  • Host - содержит статистические данные, связанные с каждым хостом, обнаруженным в сети.
  • HostTopN - готовит таблицы, которые описывают вершину хостов (главный хост).
  • Filters - включает фильтрацию пакетов, основываясь на фильтровом уравнении для захвата событий.
  • Packet capture - захват пакетов после их прохождения через канал.
  • Events - контроль генерации и регистрация событий от устройства.
  • Token ring - поддержка кольцевых лексем.

Как установлено выше, RMON, строится на протоколе SNMP. Хотя мониторинг трафика может быть выполнен при помощи этого метода, аналитические данные об информации, полученные SNMP и RMON имеют низкую производительность. Утилита Netflow, которая обсуждается в следующем разделе, работает успешно со многими пакетами аналитического программного обеспечения, чтобы сделать работу администратора намного проще.

2.1.3. Netflow, RFS 3954

Netflow - это расширение, которое было представлено в маршрутизаторах Cisco, которые предоставляют возможность собирать IP сетевой трафик, если это задано в интерфейсе. Анализируя данные, которые предоставляются Netflow, сетевой администратор может определить такие вещи как: источник и приёмник трафика, класс сервиса, причины переполненности. Netflow включает в себя 3 компонента: FlowCaching (кеширующий поток), FlowCollector (собиратель информации о потоках) и Data Analyzer (анализатор данных). Рис. 3 показывает инфраструктуру Netflow. Каждый компонент, показанный на рисунке, объясняется ниже.


Рис. 3. Инфраструктура NetFlow

FlowCaching анализирует и собирает данные о IP потоках, которые входят в интерфейс, и преобразует данные для экспорта.

Из Netflow-пакетов может быть получена следующая информация:

  • Адрес источника и получателя.
  • Номер входящего и выходящего устройства.
  • Номер порта источника и приёмника.
  • Протокол 4 уровня.
  • Количество пакетов в потоке.
  • Количество байтов в потоке.
  • Временной штамп в потоке.
  • Номер автономной системы (AS) источника и приёмника.
  • Тип сервиса (ToS) и флаг TCP.

Первый пакет потока, проходящий через стандартный путь переключения, обрабатывается для создания кэша. Пакеты с подобными характеристиками потока используются для создания записи о потоке, которая помещается в кэш для всех активных потоков. Эта запись отмечает количество пакетов и количество байт в каждом потоке. Кэшируемая информация затем периодически экспортируется в Flow Collector (сборщик потоков).

Flow Collector - ответственен за сбор, фильтрование и хранение данных. Он включает в себя историю об информации о потоках, которые были подключены при помощи интерфейса. Снижение объёма данных также происходит при помощи Flow Collector"а при помощи выбранных фильтров и агрегации.

Data Analyzer (анализатор данных) необходим, когда нужно представить данные. Как показано на рисунке, собранные данные могут использоваться для различных целей, даже отличных от мониторинга сети, таких как планирование, учёт и построение сети.

Преимущество Netflow над остальными способами мониторинга, такими как SNMP и RMON, в том, что в ней существует программные пакеты, предназначенные для различного анализа трафика, которые существуют для получения данных от Netflow-пакетов и представления их в более дружелюбном для пользователя виде.

При использовании инструментов, таких как Netflow Analyzer (это только один инструмент, который доступен для анализирования Netflow-пакетов), информация, приведённая выше, может быть получена от Netflow-пакетов для создания диаграмм и обычных графиков, которые администратор может изучить для большего понимания о его сети. Наибольшее преимущество использования Netflow в отличии от доступных аналитических пакетов в том, что в данном случае могут быть построены многочисленные графики, описывающие активность сети в любой момент времени.

2.2. Технологии не основанные на маршрутизаторах

Хотя технологии, не встроенные в маршрутизатор всё же ограничены в своих возможностях, они предлагают большую гибкость, чем технологии встроенные в маршрутизаторы. Эти методы классифицируются как активные и пассивные.

2.2.1. Активный мониторинг

Активный мониторинг сообщает проблемы в сети, собирая измерения между двумя конечными точками. Система активного измерения имеет дело с такими метриками, как: полезность, маршрутизаторы/маршруты, задержка пакетов, повтор пакетов, потери пакетов, неустойчивая синхронизация между прибытием, измерение пропускной способности.

Главным образом использование инструментов, такие как команда ping, которая измеряет задержку и потери пакетов, и traceroute, которая помогает определить топологию сети, является примером основных активных инструментов измерения. Оба эти инструмента посылают пробные ICMP-пакеты до точки назначения и ждут, когда эта точка ответит отправителю. Рис. 4 - пример команды ping, которая использует активный способ измерения, посылая Echo-запрос от источника через сеть в установленную точку. Затем получатель посылает Echo-запрос обратно источнику от которого пришёл запрос.


Рис. 4. Команда ping (Акстивное измерение)

Данный метод может не только собирать единичные метрики об активном измерении, но и может определять топологию сети. Ещё один важный пример активного измерения - утилита iperf. Iperf - это утилита, которая измеряет качество пропускной способности TCP и UDP протоколов. Она сообщает пропускную способность канала, существующую задержку и потери пакетов.

Проблема, которая существует с активным мониторингом, - это то, что представленные пробы в сети могут вмешиваться в нормальный трафик. Часто время активных проб обрабатывается иначе, чем нормальный трафик, что ставит под вопрос значимость предоставленной информации от этих проб.

Согласно общей информации, описанной выше, активный мониторинг - это чрезвычайно редкий метод мониторинга, взятый в отдельности. Пассивный мониторинг напротив не требует больших сетевых расходов.

2.2.2. Пассивный мониторинг

Пассивный мониторинг в отличии от активного не добавляет трафик в сеть и не изменяет трафик, который уже существует в сети. Также в отличии от активного мониторинга, пассивный собирает информацию только об одной точке в сети. Измерения происходят гораздо лучше, чем между двумя точками, при активном мониторинге. Рис. 5 показывает установку системы пассивного мониторинга, где монитор размещён на единичном канале между двумя конечными точками и наблюдает трафик когда тот проходит по каналу.


Рис. 5. Установка пассивного мониторинга

Пассивные измерения имеют дело с такой информацией, как: трафик и смесь протоколов, количество битов (битрейт), синхронизация пакетов и время между прибытием. Пассивный мониторинг может быть осуществлён, при помощи любой программы, вытягивающей пакеты.

Хотя пассивный мониторинг не имеет затрат, которые имеет активный мониторинг, он имеет свои недостатки. С пассивным мониторингом, измерения могут быть проанализированы только оф-лайн и они не представляют коллекцию. Это создаёт проблему, связанную с обработкой больших наборов данных, которые собраны во время измерения.

Пассивный мониторинг может быть лучше активного в том, что данные служебных сигналов не добавляются в сеть, но пост-обработка может вызвать большое количество временных затрат. Вот почему существует комбинация этих двух методов мониторинга.

2.2.3. Комбинированный мониторинг

После прочтения разделов выше, можно благополучно переходить к заключению о том, что комбинирование активного и пассивного мониторинга - лучший способ, чем использование первого или второго по отдельности. Комбинированные технологии используют лучшие стороны и пассивного, и активного мониторинга сред. Две новые технологии, представляющие комбинированные технологии мониторинга, описываются ниже. Это «Просмотр ресурсов на концах сети» (WREN) и «Монитор сети с собственной конфигурацией» (SCNM).

2.2.3.1. Просмотр ресурсов на концах сети (WREN)

WREN использует комбинацию техник активного и пассивного мониторинга, активно обрабатывая данные, когда трафик мал, и пассивно обрабатывая данные на протяжении времени большого трафика. Он смотрит трафик и от источника, и от получателя, что делает возможным более аккуратные измерения. WREN использует трассировку пакетов от созданного приложением трафика для измерения полезной пропускной способности. WREN разбит на два уровня: основной уровень быстрой обработки пакетов и анализатор трассировок пользовательского уровня.

Основной уровень быстрой обработки пакетов отвечает за получение информации, связанной с входящими и исходящими пакетами. Рис. 6 показывает список информации, которая собирается для каждого пакета. К Web100 добавляется буфер для сбора этих характеристик. Доступ к буферу осуществляется при помощи двух системных вызовов. Один вызов начинает трассировку и предоставляет необходимую информацию для её сбора, пока второй вызов возвращает трассировку из ядра.

Рис. 6. Информация, собранная на главном уровне трассировок пакетов

Объект трассировки пакетов - способен координировать вычисления между различными машинами. Одна машина будет активировать работу другой машины, задавая флаг в заголовке уходящего пакета для начала обработки некоторого диапазона пакетов, которые она трассирует. Другая машина будет в свою очередь трассировать все пакеты, для которых она видит, что в заголовке установлен похожий флаг. Такая координация обеспечивает то, что информация об похожих пакетах хранится в каждой конечной точке независимо от связи и того, что происходит между ними.

Анализатор трассировок пользовательского уровня - другой уровень в среде WREN. Это компонент, который начинает трассировку любого пакета, собирает и обрабатывает возвращённые данные на уровне ядра оператора. Согласно проектированию, компоненты пользовательского уровня не нуждаются в чтении информации от объекта трассировки пакетоввсё время. Они могут быть проанализированы незамедлительно после того, как трассировка будет завершена, чтобы сделать заключение в реальном времени, или данные могут быть сохранены для дальнейшего анализа.

Когда трафик мал, WREN будет активно вводить трафик в сеть сохраняя порядок следования потоков измерения. После многочисленных исследований, найдено, что WREN представляет похожие измерения в перенасыщенных и в не-перенасыщенных средах.

В текущей реализации WREN, пользователи не принуждаются только к захвату трассировок, которые были инициированы ими. Хотя любой пользователь может следить за трафиком приложений других пользователей, они ограничены в информации, которая может быть получена от трассировок других пользователей. Они могут только получить последовательность и подтверждение чисел, но не могут получить актуальные сегменты данных из пакетов.

В общем, WREN - это очень полезная установка, которая использует преимущества и активного, и пассивного мониторинга. Хотя эта технология находится на раннем этапе развития, WREN может предоставить администраторам полезные ресурсы в мониторинге и анализе их сетей. Монитор Собственного конфигурирования сети (SCNM) - другой инструментарий, который использует технологии и активного, и пассивного мониторинга.

2.2.3.2. Сетевой монитор с собственной конфигурацией (SCNM)

SCNM - это инструмент мониторинга, который использует связь пассивных и активных измерений для сбора информации на 3 уровне проникновения, выходящих маршрутизаторов, и других важных точек мониторинга сети. Среда SCNM включает и аппаратный, и программный компонент.

Аппаратное средство устанавливается в критических точках сети. Оно отвечает за пассивный сбор заголовков пакетов. Программное обеспечение запускается на конечной точке сети. Рис. 7, приведённый ниже, показывает программный компонент SCNM среды.


Рис. 7. Программный компонент SCNM

Программное обеспечение отвечает за создание и посылку активированных пакетов, которые используются для старта мониторинга сети. Пользователи будут посылать в сеть пакеты активации, содержащие детали о пакетах, которые они хотят получить для мониторинга и сбора. Пользователи не нуждаются в знании местоположения SCNM-хоста, принимая за истину то, что все хосты открыты для «прослушки» пакетов. На основе информации, которая существует в рамках активационного пакета, фильтр помещается в поток сбора данных, который также работает в конечной точке . Собираются заголовки пакетов сетевого и транспортного уровня, которые соответствуют фильтру. Фильтр будет автоматически введён в тайм аут, после точно заданного времени, если он получает другие пакеты приложения. Служба выборки пакетов, которая запускается на SCNM-хосте, использует команду tcpdump (подобно программе выборки пакетов) в порядке полученных запросов и записи трафика, который соответствует запросу.

Когда инструментами пассивного мониторинга определяется проблема, трафик может быть сгенерирование при помощи инструментов активного мониторинга, позволяя собирать добавляемые данные для более детального изучения проблемы. При развёртывании этого монитора в сети на каждом маршрутизаторе на протяжении пути, мы может изучать только секции сети, которые имеют проблемы.

SCNM предназначен для установки и использования, главным образом, администраторами. Тем не менее обычные пользователи могут использовать некоторую часть этой функциональности. Хотя обычные пользователи способны использовать части среды SCNM мониторинга, им позволено смотреть только свои собственные данные.

В заключение скажем, что SCNM - это ещё один способ комбинированного мониторинга, который использует и активный, и пассивный методы, чтобы помочь администраторам мониторить и анализировать их сети.

3. Заключение

Подбирая частные инструменты для использования их в мониторинге сети, администратор должен сначала решить, хочет ли он использовать хорошо зарекомендовавшие себя системы, которые уже использовались много лет, или новые. Если существующие системы более подходящее решение, тогда NetFlow - наиболее полезный инструмент для использования, так как в связки с этой утилитой могут использоваться анализирующиеся пакеты данных для представления данных в более дружелюбном пользователю виде. Тем не менее, если администратор готов попробовать новую систему, решения комбинированного мониторинга, такие как WREN или SCNM, - лучшее направление для дальнейшей работы.

Слежение и анализ сети - жизненно необходимы в работе системного администратора. Администраторы должны стараться содержать свою сеть в порядке, как для не разрозненной производительности внутри компании, так и для связи с любыми существующими публичными сервисами. Согласно вышеописанной информации, некоторое число маршрутизаторо-ориентированных технологий и не основанные на маршрутизаторах, пригодны для помощи сетевым администраторам в ежедневном мониторинге и анализе их сетей. Здесь коротко описываются SNMP, RMON, и Cisco"s NetFlow - пример нескольких технологий, основанных на маршрутизаторах. Примеры не основанных на маршрутизаторах технологий, которые обсуждались в статье, - это активный, пассивный мониторинг и их сочетание.

Wireshark - это мощный сетевой анализатор, который может использоваться для анализа трафика, проходящего через сетевой интерфейс вашего компьютера. Он может понадобиться для обнаружения и решения проблем с сетью, отладки ваших веб-приложений, сетевых программ или сайтов. Wireshark позволяет полностью просматривать содержимое пакета на всех уровнях: так вы сможете лучше понять как работает сеть на низком уровне.

Все пакеты перехватываются в реальном времени и предоставляются в удобном для чтения формате. Программа поддерживает очень мощную систему фильтрации, подсветку цветом, и другие особенности, которые помогут найти нужные пакеты. В этой инструкции мы рассмотрим, как пользоваться Wireshark для анализа трафика. Недавно разработчики перешли к работе над второй веткой программы Wireshark 2.0, в неё было внесено множество изменений и улучшений, особенно для интерфейса. Именно её мы будем использовать в этой статье.

Перед тем, как переходить к рассмотрению способов анализа трафика, нужно рассмотреть, какие возможности поддерживает программа более подробно, с какими протоколами она может работать и что делать. Вот основные возможности программы:

  • Захват пакетов в реальном времени из проводного или любого другого типа сетевых интерфейсов, а также чтение из файла;
  • Поддерживаются такие интерфейсы захвата: Ethernet, IEEE 802.11, PPP и локальные виртуальные интерфейсы;
  • Пакеты можно отсеивать по множеству параметров с помощью фильтров;
  • Все известные протоколы подсвечиваются в списке разными цветами, например TCP, HTTP, FTP, DNS, ICMP и так далее;
  • Поддержка захвата трафика VoIP-звонков;
  • Поддерживается расшифровка HTTPS-трафика при наличии сертификата;
  • Расшифровка WEP-, WPA-трафика беспроводных сетей при наличии ключа и handshake;
  • Отображение статистики нагрузки на сеть;
  • Просмотр содержимого пакетов для всех сетевых уровней;
  • Отображение времени отправки и получения пакетов.

Программа имеет множество других функций, но это были те основные, которые могут вас заинтересовать.

Как пользоваться Wireshark

Я предполагаю, что программа у вас уже установлена, но если нет, то вы можете ее установить из официальных репозиториев. Для этого наберите команду в Ubuntu:

sudo apt install wireshark

После установки вы сможете найти программу в главном меню дистрибутива. Запускать Wireshark нужно с правами суперпользователя, потому что иначе она не сможет анализировать сетевые пакеты. Это можно сделать из главного меню или через терминал с помощью команды для KDE:

А для Gnome / Unity:

Главное окно программы разделено на три части: первая колонка содержит список доступных для анализа сетевых интерфейсов, вторая - опции для открытия файлов, а третья - помощь.

Анализ сетевого трафика

Для начала анализа выберите сетевой интерфейс, например eth0, и нажмите кнопку Start.

После этого откроется следующее окно, уже с потоком пакетов, которые проходят через интерфейс. Это окно тоже разделено на несколько частей:

  • Верхняя часть - это меню и панели с различными кнопками;
  • Список пакетов - дальше отображается поток сетевых пакетов, которые вы будете анализировать;
  • Содержимое пакета - чуть ниже расположено содержимое выбранного пакета, оно разбито по категориям в зависимости от транспортного уровня;
  • Реальное представление - в самом низу отображается содержимое пакета в реальном виде, а также в виде HEX.

Вы можете кликнуть по любому пакету, чтобы проанализировать его содержимое:

Здесь мы видим пакет запроса к DNS, чтобы получить IP-адрес сайта, в самом запросе отправляется домен, а в пакете ответа мы получаем наш вопрос, а также ответ.

Для более удобного просмотра можно открыть пакет в новом окне, выполнив двойной клик по записи:

Фильтры Wireshark

Перебирать пакеты вручную, чтобы найти нужные, очень неудобно, особенно при активном потоке. Поэтому для такой задачи лучше использовать фильтры. Для ввода фильтров под меню есть специальная строка. Вы можете нажать Expression , чтобы открыть конструктор фильтров, но там их очень много, поэтому мы рассмотрим самые основные:

  • ip.dst - целевой IP-адрес;
  • ip.src - IP-адрес отправителя;
  • ip.addr - IP отправителя или получателя;
  • ip.proto - протокол;
  • tcp.dstport - порт назначения;
  • tcp.srcport - порт отправителя;
  • ip.ttl - фильтр по ttl, определяет сетевое расстояние;
  • http.request_uri - запрашиваемый адрес сайта.

Для указания отношения между полем и значением в фильтре можно использовать такие операторы:

  • == - равно;
  • != - не равно;
  • < - меньше;
  • > - больше;
  • <= - меньше или равно;
  • >= - больше или равно;
  • matches - регулярное выражение;
  • contains - содержит.

Для объединения нескольких выражений можно применять:

  • && - оба выражения должны быть верными для пакета;
  • || - может быть верным одно из выражений.

Теперь рассмотрим подробнее на примерах несколько фильтров и попытаемся понять все знаки отношений.

Сначала отфильтруем все пакеты, отправленные на 194.67.215.. Наберите строку в поле фильтра и нажмите Apply . Для удобства фильтры Wireshark можно сохранять с помощью кнопки Save :

ip.dst == 194.67.215.125

А чтобы получить не только отправленные пакеты, но и полученные в ответ от этого узла, можно объединить два условия:

ip.dst == 194.67.215.125 || ip.src == 194.67.215.125

Также мы можем отобрать переданные большие файлы:

http.content_length > 5000

Отфильтровав Content-Type, мы можем выбрать все картинки, которые были загружены; выполним анализ трафика Wireshark, пакеты, которого содержат слово image:

http.content_type contains image

Чтобы очистить фильтр, вы можете нажать кнопку Clear . Бывает, вы не всегда знаете всю необходимую для фильтрации информацию, а просто хотите изучить сеть. Вы можете добавить любое поле пакета в качестве колонки и посмотреть его содержимое в общем окне для каждого пакета.

Например, я хочу вывести в виде колонки ttl (время жизни) пакета. Для этого откройте информацию о пакете, найдите это поле в разделе IP. Затем вызовите контекстное меню и выберите опцию Apply As Column :

Таким же образом можно создать фильтр на основе любого нужного поля. Выберите его и вызовите контекстное меню, затем нажмите Apply as filter или Prepare as filter , затем выбираем Selected, чтобы вывести только выбранные значения, или Not selected , чтобы их убрать:

Указанное поле и его значение будет применено или во втором случае подставлено в поле фильтра:

Таким способом вы можете добавить в фильтр поле любого пакета или колонку. Там тоже есть эта опция в контекстном меню. Для фильтрации протоколов вы можете использовать и более простые условия. Например, выполним анализ трафика Wireshark для протоколов HTTP и DNS:

Еще одна интересная возможность программы - использование Wireshark для отслеживания определённого сеанса между компьютером пользователя и сервером. Для этого откройте контекстное меню для пакета и выберите Follow TCP stream .

Затем откроется окно, в котором вы найдете все данные, переданные между сервером и клиентом:

Диагностика проблем Wireshark

Возможно, вам интересно, как пользоваться Wireshark 2.0 для обнаружения проблем в сети. Для этого в левом нижнем углу окна есть круглая кнопка, при нажатии на неё открывается окно Expet Tools . В нём Wireshark собирает все сообщения об ошибках и неполадках в сети:

Окно разделено на такие вкладки, как Errors, Warnings, Notices, Chats. Программа умеет фильтровать и находить множество проблем с сетью, и тут вы можете их очень быстро увидеть. Здесь тоже поддерживаются фильтры Wireshark.

Анализ трафика Wireshark

Вы можете очень просто понять, что именно скачивали пользователи и какие файлы они смотрели, если соединение не было зашифровано. Программа очень хорошо справляется с извлечением контента.

Для этого сначала нужно остановить захват трафика с помощью красного квадрата на панели. Затем откройте меню File -> Export Objects -> HTTP :

В некоторых случаях для обнаружения проблем функционирования сетевого стека узла и сегментов сети используется анализ сетевого трафика. Существуют средства, которые позволяют отобразить (прослушать) и проанализировать работу сети на уровне передаваемых фреймов, сетевых пакетов, сетевых соединений, датаграмм и прикладных протоколов .

В зависимости от ситуации для диагностики может быть доступен как трафик узла, на котором производится прослушивание сетевого трафика, так и трафик сетевого сегмента, порта маршрутизатора и т. д . Расширенные возможности для перехвата трафика основаны на "беспорядочном" (promiscuous) режиме работы сетевого адаптера: обрабатываются все фреймы (а не только те, которые предназначены данному MAC-адресу и широковещательные, как в нормальном режиме функционирования) .

В сети Ethernet существуют следующие основные возможности прослушивания трафика:

  • В сети на основе концентраторов весь трафик домена коллизий доступен любой сетевой станции .
  • В сетях на основе коммутаторов сетевой станции доступен ее трафик, а также весь широковещательный трафик данного сегмента .
  • Некоторые управляемые коммутаторы имеют функцию копирования трафика данного порта на порт мониторинга ("зеркалирование",мониторинг порта).
  • Использование специальных средств (ответвителей), включаемых в разрыв сетевого подключения и передающих трафик подключения на отдельный порт.
  • "Трюк" с концентратором - порт коммутатора, трафик которого необходимо прослушать, включают через концентратор, подключив к концентратору также узел-монитор (при этом в большинстве случаев уменьшается производительность сетевого подключения).

Существуют программы (сетевые мониторы или анализаторы, sniffer ), которые реализуют функцию прослушивания сетевого трафика (в т.ч. в беспорядочном режиме), отображения его или записи в файл . Дополнительно ПО для анализа может фильтровать трафик на основе правил, декодировать (расшифровать) протоколы, считать статистику и диагностировать некоторые проблемы.

Примечание : Хорошим выбором базового инструмента для анализа сетевого трафика в графической среде является бесплатный пакет wireshark [ 43 ] , доступный для Windows и в репозиториях некоторых дистрибутивов Linux.

Утилита tcpdump

Консольная утилита tcpdump входит в состав большинства Unix-систем и позволяет перехватывать и отображать сетевой трафик [ 44 ] . Утилита использует libpcap , переносимую C/C++ библиотеку для перехвата сетевого трафика.

Для установки tcpdump в Debian можно использовать команду:

# apt-get install tcpdump

Для запуска данной утилиты необходимо иметь права суперпользователя (в частности, в связи с необходимостью перевода сетевого адаптера в "беспорядочный" режим). В общем виде формат команды имеет следующий вид:

tcpdump <опции> <фильтр-выражение>

Для вывода на консоль описание заголовков ( расшифрованные данные) перехваченных пакетов необходимо указать интерфейс для анализа трафика ( опция -i ):

# tcpdump -i eth0

Можно отключить преобразования IP адресов в доменные имена (т.к. при больших объемах трафика создается большое число запросов к DNS-серверу ) - опция -n :

# tcpdump -n -i eth0

Для вывода данных канального уровня (например, mac адреса и прочее) - опция -e :

# tcpdump -en -i eth0

Вывод дополнительной информации (например, TTL , опции IP ) - опция -v :

# tcpdump -ven -i eth0

Увеличение размера захватываемых пакетов (больше 68 байт по умолчанию) - опция -s с указанием размера (-s 0 - захватывать пакеты целиком):

Запись в файл (непосредственно пакеты - " дамп ") - опция -w с указанием имени файла:

# tcpdump -w traf.dump

Чтение пакетов из файла - опция - r с указанием имени файла:

# tcpdump -r traf.dump

По умолчанию tcpdump работает в беспорядочном режиме. Ключ -p указывает tcpdump перехватывать только трафик, предназначенный данному узлу.

Дополнительную информацию по ключам и формате фильтров tcpdump можно получить в справочном руководстве (man tcpdump ).

Анализ трафика на уровне сетевых интерфейсов и сетевом уровне с помощью tcpdump

Для выделения Ethernet -фреймов используются следующие конструкции tcpdump (общий вид):

tcpdump ether { src | dst | host } MAC_ADDRESS

где src - MAC-адрес источника, dst - MAC-адрес назначения, host - src или dst , а также для выделения широковещательного трафика.

Сниффинг пакетов - это разговорный термин, который относится к искусству анализа сетевого трафика. Вопреки распространенному мнению, такие вещи, как электронные письма и веб-страницы, не проходят через сеть интернет одним куском. Они разбиты на тысячи небольших пакетов данных и таким образом отправляются через интернет. В этой статье мы рассмотрим лучшие бесплатные анализаторы сети и снифферы пакетов.

Есть множество утилит, которые собирают сетевой трафик, и большинство из них используют pcap (в Unix-подобных системах) или libcap (в Windows) в качестве ядра. Другой вид утилит помогает анализировать эти данные, так как даже небольшой объем траффика может генерировать тысячи пакетов, в которых трудно ориентироваться. Почти все эти утилиты мало отличаются друг от друга в сборе данных, основные отличия заключаются в том, как они анализируют данные.

Анализ сетевого трафика требует понимания того, как работает сеть. Нет никакого инструмента, который бы волшебным образом заменил знания аналитика об основах работы сети, такие как "3-х этапное рукопожатие" TCP, которое используется для инициирования соединения между двумя устройствами. Аналитики также должны иметь некоторое представление о типах сетевого трафика в нормально функционирующей сети, таких как ARP и DHCP. Это знание важно, потому что аналитические инструменты просто покажут вам то, о чем вы их попросите. Вам решать, что нужно просить. Если вы не знаете, как обычно выглядит ваша сеть, может быть сложно понять, что вы нашли то, что нужно, в массе собранных вами пакетов.

Лучшие снифферы пакетов и анализаторы сети

Промышленные инструменты

Начнем с вершины и далее спустимся к основам. Если вы имеете дело с сетью уровня предприятия, вам понадобится большая пушка. Хотя в основе почти все использует tcpdump (подробнее об этом позже), инструменты уровня предприятия могут решать определенные сложные проблемы, такие как корреляция трафика со множества серверов, предоставление интеллектуальных запросов для выявления проблем, предупреждение об исключениях и создание хороших графиков, чего всегда требует начальство.

Инструменты уровня предприятия, как правило, заточены на потоковую работу с сетевым трафиком, а не на оценку содержимого пакетов. Под этим я подразумеваю, что основное внимание большинства системных администраторов на предприятии заключается в том, чтобы сеть не имела узких мест в производительности. Когда такие узкие места возникают, цель обычно заключается в том, чтобы определить, вызвана ли проблема сетью или приложением в сети. С другой стороны, эти инструменты обычно могут обрабатывать такой большой трафик, что они могут помочь предсказать момент, когда сегмент сети будет полностью загружен, что является критическим моментом управления пропускной способностью сети.

Это очень большой набор инструментов управления IT. В этой статье более уместна утилита Deep Packet Inspection and Analysis которая является его составной частью. Сбор сетевого трафика довольно прост. С использованием таких инструментов, как WireShark, базовый анализ также не является проблемой. Но не всегда ситуация полностью понятна. В очень загруженной сети может быть трудно определить даже очень простые вещи, например:

Какое приложение в сети создает этот трафик?
- если приложение известно (скажем, веб-браузер), где его пользователи проводят большую часть своего времени?
- какие соединения самые длинные и перегружают сеть?

Большинство сетевых устройств, чтобы убедиться, что пакет идет туда, куда нужно, используют метаданные каждого пакета. Содержимое пакета неизвестно сетевому устройству. Другое дело - глубокая инспекция пакетов; это означает, что проверяется фактическое содержимое пакета. Таким образом можно обнаружить критическую сетевую информацию, которую нельзя почерпнуть из метаданных. Инструменты, подобные тем, которые предоставляются SolarWinds, могут выдавать более значимые данные, чем просто поток трафика.

Другие технологии управления сетями с большим объемом данных включают NetFlow и sFlow. У каждой есть свои сильные и слабые стороны,

Вы можете узнать больше о NetFlow и sFlow.

Анализ сетей в целом является передовой темой, которая базируется как на основе полученных знаний, так и на основе практического опыта работы. Можно обучить человека детальным знаниям о сетевых пакетах, но если этот человек не обладает знаниями о самой сети, и не имеет опыта выявления аномалий, он не слишком преуспеет. Инструменты, описанные в этой статье, должны использоваться опытными сетевыми администраторами, которые знают, что они хотят, но не уверены в том, какая утилита лучше. Они также могут использоваться менее опытными системными администраторами, чтобы получить повседневный опыт работы с сетями.

Основы

Основным инструментом для сбора сетевого трафика является

Это приложение с открытым исходным кодом, которое устанавливается практически во всех Unix-подобных операционных системах. Tcpdump - отличная утилита для сбора данных, которая имеет очень сложный язык фильтрации. Важно знать, как фильтровать данные при их сборе, чтобы в итоге получить нормальный набор данных для анализа. Захват всех данных с сетевого устройства даже в умеренно загруженной сети может породить слишком много данных, которые будет очень трудно проанализировать.

В некоторых редких случаях достаточно будет выводить захваченные tcpdump данные прямо на экран, чтобы найти то, что вам нужно. Например, при написании этой статьи я собрал трафик и заметил, что моя машина отправляет трафик на IP-адрес, который я не знаю. Оказывается, моя машина отправляла данные на IP-адрес Google 172.217.11.142. Поскольку у меня не было никаких продуктов Google, и не был открыт Gmail, я не знал, почему это происходит. Я проверил свою систему и нашел следующее:

[ ~ ]$ ps -ef | grep google user 1985 1881 0 10:16 ? 00:00:00 /opt/google/chrome/chrome --type=service

Оказывыается, что даже когда Chrome не работает, он остается запущенным как служба. Я не заметил бы этого без анализа пакетов. Я перехватил еще несколько пакетов данных, но на этот раз дал tcpdump задачу записать данные в файл, который затем открыл в Wireshark (подробнее об этом позже). Вот эти записи:

Tcpdump - любимый инструмент системных администраторов, потому что это утилита командной строки. Для запуска tcpdump не требуется графический интерфейс. Для производственных серверов графический интерфес скорее вреден, так как потребляет системные ресурсы, поэтому предпочтительны программы командной строки. Как и многие современные утилиты, tcpdump имеет очень богатый и сложный язык, который требует некоторого времени для его освоения. Несколько самых базовых команд включают в себя выбор сетевого интерфейса для сбора данных и запись этих данных в файл, чтобы его можно было экспортировать для анализа в другом месте. Для этого используются переключатели -i и -w.

# tcpdump -i eth0 -w tcpdump_packets tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes ^C51 packets captured

Эта команда создает файл с захваченными данными:

file tcpdump_packets tcpdump_packets: tcpdump capture file (little-endian) - version 2.4 (Ethernet, capture length 262144)

Стандартом для таких файлов является формат pcap. Он не является текстом, поэтому его можно анализировать только с помощью программ, которые понимают данный формат.

3. Windump

Большинство полезных утилит с открытым исходным кодом в конечном итоге клонируют в другие операционные системы. Когда это происходит, говорят, что приложение было перенесено. Windump - это порт tcpdump и ведет себя очень похожим образом.

Самое существенное различие между Windump и tcpdump заключается в том, что Windump нуждается в библиотеке Winpcap, установленной до запуска Windump. Несмотря на то, что Windump и Winpcap предоставляются одним и тем же майнтайнером, их нужно скачивать отдельно.

Winpcap - это библиотека, которая должна быть предварительно установлена. Но Windump - это exe-файл, который не нуждается в установке, поэтому его можно просто запускать. Это нужно иметь в виду, если вы используете сеть Windows. Вам не обязательно устанавливать Windump на каждой машине, поскольку вы можете просто копировать его по мере необходимости, но вам понадобится Winpcap для поддержки Windup.

Как и в случае с tcpdump, Windump может выводить сетевые данные на экран для анализа, фильтровать таким же образом, а также записывать данные в файл pcap для последующего анализа.

4. Wireshark

Wireshark является следующим самым известным инструментом в наборе системного администратора. Он позволяет не только захватывать данные, но также предоставляет некоторые расширенные инструменты анализа. Кроме того, Wireshark является программой с открытым исходным кодом и перенесен практически на все существующие серверные операционные системы. Под названием Etheral, Wireshark теперь работает везде, в том числе в качестве автономного переносимого приложения.

Если вы анализируете трафик на сервере с графическим интерфейсом, Wireshark может сделать все за вас. Он может собрать данные, а затем анализировать их все здесь же. Однако на серверах графический интерфейс встречается редко, поэтому вы можете собирать сетевые данные удаленно, а затем изучать полученный файл pcap в Wireshark на своем компьютере.

При первом запуске Wireshark позволяет либо загрузить существующий файл pcap, либо запустить захват трафика. В последнем случае вы можете дополнительно задать фильтры для уменьшения количества собираемых данных. Если вы не укажете фильтр, Wireshark будет просто собирать все сетевые данные с выбранного интерфейса.

Одной из самых полезных возможностей Wireshark является возможность следовать за потоком. Лучше всего представить поток как цепочку. На скриншоте ниже мы можем видеть множество захваченных данных, но меня больше всего интересовал IP-адрес Google. Я могу щелкнуть правой кнопкой мыши и следовать потоку TCP, чтобы увидеть всю цепочку.

Если захват трафика производился на другом компьютере, вы можете импортировать файл PCAP с помощью диалога Wireshark File -> Open. Для импортированных файлов доступны те же фильтры и инструменты, что и для захваченных сетевых данных.

5. tshark

Tshark - это очень полезное звено между tcpdump и Wireshark. Tcpdump превосходит их при сборе данных и может хирургически извлекать только те данные, которые вам нужны, однако его возможности анализа данных очень ограничены. Wireshark отлично справляется как с захватом, так и с анализом, но имеет тяжелый пользовательский интерфейс и не может использоваться на серверах без графического интерфейса. Попробуйте tshark, он работает в командной строке.

Tshark использует те же правила фильтрации, что и Wireshark, что не должно удивлять, так как они по сути являются одним и тем же продуктом. Приведенная ниже команда говорит tshark только о том, что необходимо захватить IP-адрес пункта назначения, а также некоторые другие интересующие нас поля из HTTP-части пакета.

# tshark -i eth0 -Y http.request -T fields -e ip.dst -e http.user_agent -e http.request.uri 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /images/title.png 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /images/styles/phoenix.css 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /images/code/jquery_lightbox/jquery_lightbox/js/jquery-1.2.6.pack.js 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /images/styles/index.css 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /images/images/title.png 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /favicon.ico 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /favicon.ico

Если вы хотите записать трафик в файл, используйте для этого параметр-W, а затем переключатель -r (чтение), чтобы прочитать его.

Сначала захват:

# tshark -i eth0 -w tshark_packets Capturing on "eth0" 102 ^C

Прочитайте его здесь же, или перенесите в другое место для анализа.

# tshark -r tshark_packets -Y http.request -T fields -e ip.dst -e http.user_agent -e http.request.uri 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /contact 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /reservations/ 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /reservations/styles/styles.css 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /res/code/jquery_lightbox/jquery_lightbox/js/jquery-1.2.6.pack.js 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /res/styles/index.css 172.20.0.122 Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0 /res/images/title.png

Это очень интересный инструмент, который скорее попадает в категорию инструментов сетевого криминалистического анализа, а не просто снифферов. Сфера криминалистики, как правило, занимается расследованиями и сбором доказательств, и Network Miner выполняет эту работу просто отлично. Также, как wireshark может следовать потоку TCP, чтобы восстановить всю цепочку передачи паков, Network Miner может следовать потоку для того, чтобы восстановить файлы, которые были переданы по сети.

Network Miner может быть стратегически размещен в сети, чтобы иметь возможность наблюдать и собирать трафик, который вас интересует, в режиме реального времени. Он не будет генерировать свой собственный трафик в сети, поэтому будет работать скрытно.

Network Miner также может работать в автономном режиме. Вы можете использовать tcpdump, чтобы собрать пакеты в интересующей вас точке сети, а затем импортировать файлы PCAP в Network Miner. Далее можно будет попробовать восстановить какие-либо файлы или сертификаты, найденные в записанном файле.

Network Miner сделан для Windows, но с помощью Mono он может быть запущен в любой ОС, которая поддерживает платформу Mono, например Linux и MacOS.

Есть бесплатная версия, начального уровня, но с приличным набором функций. Если вам нужны дополнительные возможности, такие как геолокация и пользовательские сценарии, потребуется приобрести профессиональную лицензию.

7. Fiddler (HTTP)

Технически не является утилитой для захвата сетевых пакетов, но он так невероятно полезен, что попал в этот список. В отличие от других перечисленных здесь инструментов, которые предназначены для захвата трафика в сети из любого источника, Fiddler скорее служит инструментом отладки. Он захватывает HTTP трафик. Хотя многие браузеры уже имеют эту возможность в своих средствах разработчика, Fiddler не ограничивается трафиком браузера. Fiddler может захватить любой HTTP-трафик на компьютере, в том числе и не из веб-приложений.

Многие настольные приложения используют HTTP для подключения к веб-службам, и помимо Fiddler, единственным способом захвата такого трафика для анализа является использование таких инструментов, как tcpdump или Wireshark. Однако они работают на уровне пакетов, поэтому для анализа необходимо реконструировать этии пакеты в потоки HTTP. Это может потребовать много работы для выполнения простых исследований и здесь на помощь приходит Fiddler. Fiddler поможет обнаружить куки, сертификаты, и прочие полезные данные, отправляемые приложениями.

Fiddler является бесплатным и, так же, как Network Miner, он может быть запущен в Mono практически на любой операционной системе.

8. Capsa

Анализатор сети Capsa имеет несколько редакций, каждая из которых имеет различные возможности. На первом уровне Capsa бесплатна, и она по существу позволяет просто захватывает пакеты и производить их базовый графический анализ. Панель мониторинга уникальна и может помочь неопытному системному администратору быстро определить проблемы в сети. Бесплатный уровень предназначен для людей, которые хотят узнать больше о пакетах, и наращивать свои навыки в анализе.

Бесплатная версия позволяет контролировать более 300 протоколов, подходит для мониторинга электронной почты, а также сохранения содержимого электронной почты, она также поддерживает триггеры, которые могут использоваться для включения оповещений при возникновении определенных ситуаций. В связи с этим Capsa в какой-то степени может использоваться в качестве средства поддержки.

Capsa доступна только для Windows 2008/Vista/7/8 и 10.

Заключение

Несложно понять, как с помощью описанных нами инструментов системный админимтратор может создать инфраструктуру мониторинга сети. Tcpdump или Windump могут быть установлены на всех серверах. Планировщик, такой как cron или планировщик Windows, в нужный момент запускает сеанса сбора пакетов и записывает собранные данные в файл pcap. Далее системный администратор может передать эти пакеты центральной машине и анализировать их с помощью wireshark. Если сеть слишком велика для этого, имеются инструменты корпоративного уровня, такие как SolarWinds, чтобы превратить все сетевые пакеты в управляемый набор данных.